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B IW1 surface radiosity [W/cm’/cm] ; 
c molar concentration (C, + C,) [mol/cm3] ; 
ci3 ith component molar concentration 

[mol/cm3] ; 
c,, molar specific heat at constant pressure 

[ergs/g Kl ; 
D, diffusion coefficient [cm’/s] ; 

ebir spectral black body emissive power 
[W/cm’/cm] 

Ei, exponential integral of ith kind ; 
k, conductivity [W/cm K] ; 
k (I’ absorption coefficient [l/cm] ; 
n, mass flux [g/cm2 s] ; 
N, molar flux [mol/cm’ s] ; 
p, pressure [Pa] ; 

4 ,’ radiative flux [W/cm’] ; 
r, mass fog production rate/volume 

[g/cm3 s]; 

R, molar fog production rate/volume 
[mol/cm3 s] ; 

t> time [s] ; 

:*, 
mass average velocity [cm/s] ; 
molar average velocity [cm/s] ; 

WAY albedo of scattering; 

Xi, ith component molar fraction ; 
Z, physical coordinate normal to the wall 

[cm]. 
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Abstract-Bulk condensation and heat transfer in a very hot gaseous mixture that contains a vapor 
component condensable at high temperature are investigated. A general formulation of the problem is 
presented in various forms. Analytical solutions for three specific cases involving both one- and two- 
component two-phase mixtures are obtained. It is shown that a detached fog formation is induced by 
rapid radiative cooling from the mixture. The formation of radiatively induced fog is found to be an 
interesting and important phenomenon as it not only exhibits unique features different from the 
conventional diffusion induced fog, but also greatly enhances heat transfer from the mixture to the 

boundary. 

NOMENCLATURE 

Greek symbols 

3, vapor void fraction ; 

El? spectral emissivity ; 
A, latent heat of condensation [ergs/g] or 

wavelength [cm] ; 

tTo whom correspondence should be directed. 
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A, molar latent heat of condensation 

[ergs/m011 ; 

03 superficial mass density (11~ +p,) [g/cm31 ; 

Pi- ith component superficial mass density 

* [g/4; 
P 1 true mass density [g/cm31 ; 
fl, Stefan-Boltzmann constant [g/K’ s3] ; 
7, optical coordinate (k,z); 

(c)i, ith component mass fraction. 

Subscripts 

0, initial condition ; 
1, condensable vapor; 

2, noncondensable gas ; 
3 -. fog condensate; 

y’ 
condition at infinity : 
liquid ; 

\v, wall : 
1‘. vapor; 

/.. wavelength [cm]. 

INTRODUCTION 

THE PRESENT work reports a development in heat 
transfer that apparently has not been addressed 
before. It is concerned with heat transfer from a 
gaseous mixture that contains a condensable vapor 
and is at very high temperature. In the past, what 
has been investigated is the heat transfer associated 
with either a condensable mixture at low tempera- 
ture or a noncondensable mixture at high tempera- 
ture. The former reduces to the classical problem of 
fog formation in, say, atmosphere where the rate of 
condensation is diffusion controlled (molecular or 
conductive diffusions). In the presence of non- 
condensable gases, heat transfer to a cooler bound- 
ary by this mechanism is known to be drastically 
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reduced. In the latter case, where the high tempera- 
ture mixture is noncondensable. radiative transfer 
may become dominant and a vast amount of existing 

literature belongs to this class of problem. 
We consider here a fundamentally different type of 

problem of relevance to recent advances in open cycle 
MHD power plants and breeder reactor safety. In 

the advanced coal fired power plant using MHD as a 

topping cycle. a condensable mixture is encountered 
at temperatures of 2000--3OOOK [l-4]. Conden- 
sation of the vaporized slag and seed materials at 

such a high temperature can take place in the MHD 
generator channel as well as in the radiant boiler. 
Similarly, in breeder reactor accident analyses in- 

volving hypothetical core disruptive accidents. a 
UO, vapor mixture at 4000K or higher is often 
considered [5-91. Since the saturation temperature 

of UO, at one atmosphere is close to 4000K, 
condensation is also likely at a very high tempera- 

ture. Accordingly, an objective of the present work is 
to provide an understanding of heat transfer and 
condensation mechanics in systems containing a high 

temperature condensable mixture. 
Physically, as a high temperature condensable 

mixture is in contact with a cooler surface, a thermal 
boundary layer develops rapidly because of intensive 

radiative cooling from the mixture. Within this layer, 
the vapor becomes supersaturated and condenses to 
form fog before it can diffuse to the surface. To be 
seen in the present study, such a radiatively 
controlled fog formation, because of its action-at-a- 
distance characteristics, exhibits characteristics that 
are absent in the conventional diffusion induced fog 
formation processes. In addition to altering the 

radiative properties, the fog formation process itself 

offers a temperature sustaining mechanism. 
By virtue of the high latent heat effects of 

condensation relative to sensible heat effects, a 
temperature will be maintained at high levels even 

under conditions of rapid radiative heat removal, 
which in turn is supportive of the heat transport 

mechanisms. resulting in a great enhancement of 
heat transfer to the surrounding wall. 

GENERAL FORMlJLATION 

In the following, a general formulation of the 

problem is given, which presents the species, energy 
and radiative transfer equations in readily usable 
forms. They will then be applied to three specific 
problems which will be solved analytically. 

Consider a gas mixture made up of component 1, 
condensable vapor ; component 2. noncondensable 
gas; and component 3, the condensate or fog. The 
conservation equations of species are [IO] 

where R3 = -R, = R is the molar fog production 
rate per unit volume. Assuming that the fog occupies 
a negligible volume, that it moves at the molar- 
average velocity, and that it does not interfere with 

the diffusion of components 1 and 2, we can adopt a 
pseudo-binary approach whereby we define 
c = C, +C,,\-i = Ci/c for i = 1. 2 and 3. Introduc- 
ing N, = s_,Cu* -i‘DV?c,, and making use of the 
identities, Cu* = N, + N, and D*/Dt = ii& t- I(* .V, 

the combination of equations (1) and (2) eventually 
leads to 

c= D*?;, 
~ = V~(FDVX,)-(1 -s,)R 

Dt 
(4) 

Similarly, we have 

i‘ D*x, 
~ = V,(cDVx,, 

Dt 
(5) 

and 

e D*.u, 
~ = (I f.Xj)R 

Dt 
(6) 

for components 2 and 3, respectively. In equation (6) 
the diffusion term disappears, for we assume the fog 
moving at the molar-average velocity. 

In the presence of a net bulk motion, the species 
equations based on mass units rather than molar 
units are preferable in order to avoid the fictitious 
molar average velocity. They are: 

FP, _ = -V,n,-r 
it (7) 

C?P 2 - = -V.n, 
?t 

(8) 

i-P, 
$ = -v.n,+r (9) 

or, in terms of mass fraction, 

g,q; = V~DpVm,-(1-0,,)i (10) 

j’ 2 = v. DpVw, (11) 

and 

p 2 = (1 + 1’>& (12) 

respectively, where DjDf = t’;?t +zt .V, pu = 11, -t-n,, 
p G p, +pz and wi z Q,/P for i = 1,2 and 3. 

In one-component, two-phase systems where the 
mixture consists of a vapor and its own condensate, 
a common practice is to use void fraction in place of 
mass fraction. Designating the vapor void fraction 
by r, then the superficial vapor density pr can be 
related to the true density p: by pI, = rp: and, 
similarly, 0, = (1 -rx)p: for the condensate. With 
n,. =p,u, and n, = p,u, the two-phase continuity 
equations (7) and (9) can be re-cast into the 
following useful forms, 
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and 

;=v.[(l-a)U,]-+ (14) 

where the true density of liquid condensate has been 
taken as constant. 

The formulation is incomplete without specifying 
the energy equation, as the fog formation term in the 
species equation is governed mainly by the cooling 

rate. Assuming negligible viscous and diffusion 
dissipation effects, the energy equation can be written 
as 

cc, p;; = V.KVT+ir-V.q, (15) 

where 

c, = i xic,, 
i= 1 

and q,. represents the radiative heat flux which 

augments conductive and convective heat transfer. 

Thus, the term V. q, represents a sink term attributed 
to radiative cooling. 

In the present study, three specific problems will 
be investigated, all of which involve a semi-infinite 
mixture in contact with a cooler boundary. Under 
this configuration the divergence of radiative flux 

can be explicitly expressed by [ 111, 

dq, _ 2 

-- I ‘I dT o 
B,,E,(r,)di.+2 

(l-~)eh,.(t:)+~Gr(t;) 
I 

x E, (IT, - T;l) dt:, di 

- 
J’ 

’ [4(1 - W,)+,,(T,)- H’,G,(r,)]di. 
0 

(16a) 

Assuming a diffusive bounding surface, the spectral 
surface radiosity is given by 

B,, = CiwChnw + 2( 1 -CA,) 

X (I- Wki,,(~:) + 7 G,(T:) 
1 

x E, (5:) dr:, (16b) 

and the incident radiant energy per unit area within 
the mixture by 

G,(r,) = 2B,J,(r,) 

+f 
J 

X G,(t;)E,(Ir,-r’,l)dT;. (16~) 
0 

In the above equations, I+‘, is the spectral albedo of 
scattering, tl is the optical thickness, E,,- is the 
exponential integral function of order n and ebl the 
spectral black body emissive power. It is noted that 
B AnO G, and ebl all contain implicitly the unknown 
temperature profile by which the nonlinear integral 
equations (16aac) are coupled to the transient 
differential equations (the species and energy equa- 
tions). Thus analytical solutions appear to be 

difficult to obtain when the radiative transfer is 
included. 

SOLUTIONS 

In this section, some highly simplified problems 

are examined, which can nevertheless elucidate the 
essence of radiatively induced fog formation in a 

high temperature condensable mixture. 
The semi-infinite condensable mixture is assumed 

to be in local thermodynamic equilibrium, bounded 
by a black surface. Thermophysical properties of 
individual constituents in the mixture are assumed to 
be constant. We further introduce the assumptions 
that the mixture is gray, radiation properties are 
constant and the albedo is negligibly small. The last 

assumption, though somewhat arbitrary, could be 
realized in a dilute mixture where the scattering 

coefficient is much smaller than the absorption 
coefficient. Even in cases where the albedo is not 

negligibly small, its effect on overall heat transfer is 
often less important than that of absorption. With 

these simplifications, equations (16aac) are reduced 
to: 

-“ly;= 2d;E,(r)+2 oT4(T’)E,(1T-?‘l)ds 

-4fJT4(T). (17) 

This form will be used extensively in the problems to 
be solved next. 

1. Single-component two-phase mixture with no 

relative slip 

The first specific problem under consideration is a 

saturated semi-infinite mixture composed of a pure 
vapor and its own liquid droplets uniformly dis- 

persed inside the mixture (see Fig. la). Being initially at 

a uniform saturation temperature T, and pressure 
P,, the mixture is suddenly brought into contact 

(0) Single component two phase mixture 

. . . . 

TW 

. 

Pure vapor and its 
liquid droplets 

. . . . 

(b) Two component two phase mixture 

Fog boundary 

FIG. 1. Physical coordinates for single- and two-component 
two-phase mixture. 

H.M.T. 23 I I 
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with a cooler surface at T,,. The case of no slip (i.e. 
u, = u, = u) between the vapor and droplets is 
considered here; complete slip will be treated in the 
following sub-section. 

In view of the equilibrium condition and the semi- 

infinite extent, the temperature and pressure distri- 
butions within the mixture should remain approxi- 

mately unchanged throughout the course of heat 
transfer, i.e. DT/Dt = VT = 0. Then the species and 

energy equations (13)-( 17) reduce to 

(18) 

and 

i;q 
l= 2a(T,S- T,4)E2(r) 
?r 

Gob) 

where z and t are measured from (normal to) the 
wall. Conduction heat transfer is assumed to be 
negligibly small in comparison with radiative 

transfer. 
Apparently the heat transfer to the wall is 

a(T$ T,,:) from equation (20b), and the local fog 

formation rate is 

I’ = ‘:“!~ (T,” - T;t)E, (T) (21a) 

from equation (20a). The total fog production rate is 

as is expected. The migration velocity of the vapor to 
replenish the vapor depleted due to condensation 
near the surface can also be readily obtained. 

Combination of equations (18) and (19) gives 

With the condition that u = 0 at z = 0 for all t, we 
can integrate to obtain 

II = -lI, [I -215,(T)]. (22) 

Clearly t/, = o(T$ T:)(l/pf - l/p:)/k,i represents 
the mixture velocity far away from the boundary. 

Since u, is inversely proportional to the absorption 
coefficient k,, a vapor with a higher opacity induces 
a smaller bulk motion because of self-shielding 
effects. Furthermore u, is proportional to the fourth 
power of temperature, a unique characteristic that 
arises when radiative transfer is dominant. 

With some stipulations, the vapor void fraction 
can be obtained analytically. Upon substitution of 
equation (21) into (18), there results 

(23) 

where rr G ~~:/(p:-p,*) = 1 for practical purposes. 

The general solution is equivalent to that of the two 
independent differential equations 

with equation (22). 

These characteristic equations must be integrated 
from the initial curve defined by x = x,, at t = 0, i.e. 
along the I’ axis of the I-I plane. The solution is a set 
of curves represented by 

where 1,) is the initial value of ; (at t = 0) along the 

characteristic. so that z,, identifies the characteristic, 
and ~1~ is ~1 at : = z”, as obtained from (22). Since 
~1 = 0 at ; = 0 it follows that, from equation (26). 
2 = rs at the cold wall for all time f > 0. An a vs z 
profile at fixed time is obtained by eliminating z(, 

between (25) and (26) utilizing (22). 
An explicit expression for x is obtainable if the 

standard exponential kernel approximation is em- 
ployed whereby Ej(t) is replaced by an exponential 
function of the form (l/3) exp( -3r/‘2). By substitut- 
ing equation (22) into equation (25) and evaluating 
the integral in accordance with the exponential 

kernel approximation, we obtain 

Using equation (26) along with the above equation 

and the simplified form II = II,. (e jr ‘- I) and 
u0 = II, (e % 2 - 1) of (22), to eliminate t,, and ~1”. we 
obtain the final solution 

It is interesting to observe that the results are 
given in terms of exponential functions. This expon- 
ential behavior is distinctively different from the 

square root nature in existing fog formation SOL 
utions based on diffusion mechanisms. The migration 
velocity profile given by equation (22) is responsible 
for this and can be understood on simple physical 

grounds. Inasmuch as the replenished mass flux at a 
given optical coordinate T is linearly proportional to 
the net radiative heat loss from the layer between 
T = 0 and T = r, the migration velocity at T should 
be linearly proportional to the emissivity (or absorp- 
tivity) of the gas layer. Since the emissivity of an 
optically thick layer is unity and [1 -215,(r)] for a 
finite layer, the ratio of migration velocities, ~r(~)ju, , 

should be identical to the emissivity of the layer as 
given by equation (22). The fog formation rate and 
the migration velocity, both being time independent, 
are presented in Fig. 2. with the liquid void fraction 
in Fig. 3. For comparison purposes, the complete slip 
solutions are superimposed in the figures. A dis- 
cussion on their differences and similarity is pre- 
sented in the following section. 
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FIG. 2. Local fog formation rate and local mass average velocity distribution in a single-component 
two-phase mixture. 

I 2 

T 

FIG. 3. Liquid void fraction distribution in a single- 
component two-phase mixture. 

2. Single-component two-phase mixture with slip 
We now extend to the opposite case of allowing a 

complete slip between the vapor and condensate, i.e. 
u, = 0 and u,. = IL In this case the continuity 
equations are simplified to 

(28) 

(29) 

The energy equation remains unchanged, so are the 
resulting heat transfer and fog formation rates. The 
vapor void fraction and velocity equations can be 
easily solved to yield 

GE,-L 
P: 

(3Oa) 

or 

(1 -X)/(1 -ao) = 1 +2E,(T)(p,T/p:)t*/(l -go) Wb) 

where t* = IA K t and D D 

U = -U,[1-2&(T)];% (31) 

respectively. 
In comparison with the no-slip case, we see that 

whether there is slip or not has no effect on fog 
production or heat-transfer rate. However the vapor 
migration velocity profiles in the mixture given by 
equations (22) and (31) are different by a factor of CC. 
Since r ,< 1 and is time dependent, the migration 
velocity in the slip case becomes transient and is 
larger. Furthermore, the liquid void fraction (1 -c(), 
is linearly proportional to time in the slip case, but 

not in the non-slip case. In the former, the liquid 
being frozen in place can only be increased by 
condensation. Since the condensation rate is con- 

stant with respect to time, it leads to a linear time 
dependent void fraction. From Fig. 2, we see that the 
slip solution gives rise to a larger migration velocity. 
However, depending on the initial void fraction and 
the vapor-liquid density ratio, it can go either way 
in the liquid void fraction as illustrated in Fig. 3. 

3. Two-component two-phase mixture 
We now turn to a more difficult example problem 

involving a two-component mixture, with one-com- 

ponent noncondensable. The noncondensable gas 
complicates the matter considerably as it impedes 
the motion of condensable vapor toward the fog 
region and thus, creates a nonuniform and non- 
steady temperature distribution within the mixture 
as shown in Fig. 1 b. 

For generality, we allow the mixture to be 
uniformly superheated initially. After the mixture 
adjacent to the surface cools to its saturation 
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temperature, condensation will occur and two dis- 
tinct regions, fog and fog-free regions, will appear. 
We then have to solve conservation equations in 
each region and match solutions together. 

To keep the problem amenable. we assume that 
bulk convection, conduction and molecular diffusion 
are negligibly small in comparison with the effects 

attributable to thermal radiation. This assumption 
appears to be reasonable in view of the high 

temperature of the mixture which intensifies the 
radiation. In addition. it is assumed that the mixture 

is in local thermodynamic equilibrium and that the 
gas and vapor obey the ideal gas law. 

2 

Fog-free region 

t 
I, +, 

t 

In the absence of hulk velocity. the molar 

formulation, equations (4 j(6), (IS). is preferable. In 
the fog free region. K = z3 = 0, ? = e,, = constant 

and 

FIG. 4. Fog formation region and the thickness of fog layer. 

(3’) 

pressure P,X in the fog-free region which stays 
constant. 

(33) 

for zJ’ Q z where zJ. indicates the fog layer thickness 
which grows with time. The divergence of radiative 

flux given by equation (17) is still applicable. 
Similarly in the fog region we have 

Exact analytical solutions do not seem possible as 
they involve a system of transient differential integral 

equations. Consequently, we must resort to numeri- 
cal or approximate analytical techniques wherever 
plausible. We attempt to solve s, and xj in terms of 

7’ first. and then obtain solutions for T. 

Vapor nzolar,fkcrio~~ 
The vapor molar fraction in the fog free region is 

obvious from equation (32): it is constant and 
uniform, at its initial value Y, (). 

In the fog region, by eliminating R between 
equations (34) and (35), we have 

1 i\-,_ 1 i.X.~ 
l--Y, c’t I +s, i-7 

which is subject to the condition that at r = tf, 
x1 = x,,, and xj = 0. The physical meaning of the 
condition can be best understood by referring to Fig. 
4, which shows how the thickness of fog grows with 
time. At the time t = tf the fog boundary is located 
at z= zl. (,or T = rJ.)_ At the boundary, the fog 
vanishes, i.e. .yj = 0, and the vapor is saturated, 
namely X, = I~~~~(~,J = constant. where T,,, is the 
saturation temperature corresponding to the vapor 

integration of the above equation yields 

l--X~ 
---- = I -i-s,. 

1 -s,,, 
(37) 

Because c{1 +x,) = C, +C, +C, = CO = constant 

and e = P,.(T)/s, RT, the final result is 

-x*(T) = Q,(T)/[1 --~\,N+U”V)l 

and, consequently, from equation (37) 

(38) 

X3(T) = [&,, ---Bo(nl/[I -.~,.,t+ck,vY] (39) 

where 

.9”(T) = C,i:?:,, = P,(T)/Q7T. 

If the Clasius-Clapeyron type of equation is 

supplied for FL,(T) and the temperature profile 
known, the local molar fractions can be evaluated 

from equations (38) and (39). Other related quan- 
tities such as local fog concentration 
C3 = cx, = (?,[x,,, +g,(~)] and total fog produced. 

i 

Ll 
C, dZ, 

00 

can be calculated in a straightforward manner when 

needed. 

Turning now to the transjent tem~rature distri- 

bution, a major mathematical di~culty arises from 
the integral form of the radiative flux expression. 
However, great simplification can be realized in 
cognizance of the fact that E, (IT' - 71) behaves as a 
delta function. As z’ -+ r, E, + 3c and as IT’- T/ 

increases, E, diminishes rapidly. As a result equation 
(17) can be approximated by 

-% z 2aT,4&(2)+2aT4(7) 
‘K 

E,(lz-r’l)dt’ 
0 

- 4crT4(T) 

= 2E,(z)cr[T,J- 7+(z)]. (40a) 

This approximation has been used and found to be 
satisfactory in our previous analyses [5.8]. In the 
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present problem of interest, T4 x T’, thus 

Wb) 

Employing the above approximation in equation 
(33), the transient temperature profile in the fog-free 
region can be found, with the initial condition 
T = T, at t = 0, as 

o3 = 1/[1+3PE,@)t] (41) 

where 0 = TIT, and /l = 2k,(rTd/cc,. It should be 
noted that in the fog-free region 

CS, = 5 CiSpi = constant 
i= 1 

as C,‘s are invariant and c,;s were assumed as 
constant. However, in the fog region the C,‘s changes 
with time. 

Fog formation starts as soon as the temperature 
drops to the saturation temperature, T,,, correspond- 

ing to P,. Then setting T = T,,,(P,) or 8 = esat in 

equation (41) yields the equation for the growth of 
fog layer thickness with time, 

tl. = R;: - 1)/3B&(r,), 

as depicted in Fig. 4. 

(42) 

In the fog region, some stipulations are necessary 
to obtain the temperature profile. By eliminating R 

between equation (34) and (36), and noting that 
under the local thermodynamic equilibrium, 

cx,_ ,i’T 
dt -x1 & 

where .u\ (T) = dx, (T)/dT, we have 

aq,/az 

AX: 

(43) 

(44) 

1+- a c,u -x1) 

for t > tf and Z > Z,. Employing the same approxi- 
mation from equation (40b), the above equation can 
be integrated from t=tf to t. If use is made of 
equation (42), the final temperature profile is found 

analytically and is implicitly given by 

pE,(T)t = &Ii 3 - 1) + 
s 

8, rl(Q)(l t-r(Q)) 
d0 (45) 

0 Q4 

in which Q = TIT,, a 5 2aT,3k&,c , 
7 = Ax’,(T)/f=,(l -x,(T)) and q(T) = eeiC,c:z. 

Since C,, C and x’, are generally temperature 
dependent, they are provided below to facilitate later 

numerical computations, 

6,=x$,, +x,e,,+x,c,, 

=ep,+go(TN~,, -e,,)+ GL-g,(T))& 
1 -x,a,+g,V) 

c = t’,[l -xsat+g,V)l 
and 

x; = dx,/dT = (1 -x,,t)sb(T)l[l-x,,,+g,(T)l’ 

where gb (T) = dg,/dT. With these explicit analytical 

expressions, the integration term in equation (45) 

can be numerically carried out in a straightforward 

manner to yield the temperature distribution as a 
function of time and position in the fog region. 

Wall heat jlux 

In the absence of conduction and convection, the 
radiative flux represents the total wall heat flux, 

I 
-qrw(t) = 2cT,4 

I 
04(r, t)E2(T) dr. (46a) 

0 

Prior to fog formation, i.e. t < tfi (see Fig. 4), H is 
given by equation (41). Thus 

Ed 
[l + 3/ltEz(7)]4’3 dT (46b) 

which again calls for numerical integration. After fog 

formation, namely t > tf,, two distinct regions 
appear. Accordingly, 

&v(t) J 
r,(r) 

-2aT,4= o 

E,(T)04(t,t)d7 

I 
% 

+ E,(t)d7 
r,(*) [ 1 + 3/M,(z)]4’3 (46c) 

The first term is attributable to the fog region with 0 
given by equation (45) while the second term is 
attributable to the fog-free region. 

Illustration 
As an application of the above solutions, we 

consider a large two-component two-phase bubble 
such as encountered in nuclear reactor safety. The 
bubble, which might arise in a hypothetical core 

disruptive accident of a breeder reactor, consists 
of UO, fuel vapor and a noncondensable gas of 
xenon with the following initial condition: UO, 

vapor pressure = 0.2655 MPa (which implies 

T,,, = 4000 K), total pressure = 0.3 MPa and 50 K 

superheat (i.e. T, = 4050K). The specific heats at 

constant pressure of UO, vapor, xenon gas and 
liquid condensate are taken as 20.02, 12.55 and 
135.56 J/gmole K, respectively. The latent heat of 
condensation of UO, vapor is 5.19 x lo5 J/gmole K 
and the saturation relationship between UO, vapor 

pressure and temperature is taken as 

P,,, = 0.1 exp 69.979 - 76T:oo ~- - 4.34 In T,,, 
Sdt 

where P,,, and T,,, are in units of Pa and K. In the 

absence of experimental data for UO, vapor, an 
absorption coefficient of O.O0082cm-’ is assumed. 

Figure 5 shows the transient temperature profile 
and fog penetration depth, 7f, in the vicinity of a 
cold boundary. The sensible heat in the initially fog- 
free mixture rapidly radiates away to the cold wall, 
inducing an exponential growth of thermal boundary 
layer, which in turn triggers a fog formation. Solid 
lines in the sections below 4000K correspond to the 
fog zones where the heat of condensation is released 
and delivered to the boundary by radiation. Other 
lines above 4000K lie in the fog-free region, from 
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FIG. 6. Radiative flux to the cooler surface with and without 
fog formation. 

which sensible heat is being radiated away. The very 

steep dashed line corresponds to the temperature 
profile at time 2.07s if fog formation were not 
considered. Without the fog formation the tempera- 
ture profile in the fog region departs substantially 
from the one with fog formation. Figure 6 shows the 
transient heat flux at wall vs time. The lower solid 
curve shows values predicted on neglect of fog 
formation while the upper solid curve shows the 
values with fog formation. For comparison purposes, 
black body emissions based on initial superheated 
temperature and saturated temperature are repre- 
sented by dashed lines in the figure. We see the great 
significance of fog formation as it increases the flux 
by an order of magnitude by sustaining the flux. 

Thus the fog formation is an important l’actor that 
should be considered in calculating the heat transfer 
from a high temperature condensahlc mixture: the 
neglect of it could Icad to a Iargc error 1~~ grossI\ 
underestimating the fux. 

Analytical solutions for three specific problems 

relating to heat transfer from a high temperature 
condensable mixture have been obtained. Our results 
show that the rapid radiative cooling from the 
mixture induces a detached fog formation. This 
radiative controlled fog formation is a new and 

interesting phenomenon. WC find it to be verv 
effective in transferring heat to the cooler boundq 

because as the vapor condenses into fog in the 
mixture, the latent heat of condensation tends to 

sustain the temperature of fog which 

enhances the heat transfer to the boundary 
of thermal radiation. 

in turn 
by means 

While three solutions have been obtained to 

provide insight into heat transfer mechanism and 
radiatively controlled fog formation in high tempera- 

ture condensable mixture. some idealizations were 
necessarily made in this paper to arrive at those 

solutions. They should be gradually relaxed in later 
studies. In particular, it would be of practical and 
fundamental interest to rcmovc the assumption that 

the absorption coefficient is constant. by incorporat- 
ing into analyses the dependence of both absorption 
and scattering coefficients on evolution of fog 

condensate. 

Ac~,~o~~ledy~r)~r,lt This work was performed under the 
auspices of the U.S. Department of Energ!. 
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TRANSFERT THERMIQUE LORS DE LA CONDENSATION DUN MELANGE 
CONDENSABLE ET A TEMPERATURE ELEVEE 

Rksumit --On etudie la condensation en masse et ie transfert thermique pour un melange de gaz trts 
chaud qui contient une vapeur condensable 2 temperature ilevie. On presente sous des formes differentes 
une formulation genirale du probldme. On obtient des solutions analytiques pour trois cas specifiques 

correspondant a des melanges a un ou deux composants et deux phases. On montre que la formation 

d’un brouillard est induite par un rapide refroidissement du melange par rayonnement. La formation du 

brouillard induite par le rayonnement est un phbnomene inttressant et important qui est un mtcanisme 

different de la formation conventionneile par diffusion et qui augmente beaucoup le transfert thermique 

entre le melange et ies parois. 

W~RME~BERGANG VON EINEM BE1 HOHER TEMP~RATUR KONDENSIERBAREN 
GEMISCH 

Zusammenfassung- Untersucht werden die Kondensation und der Warmeiibergang in einem sehr heigen 
Gasgemisch, wobei das Gemisch eine Dampfkomponente enthalt, die bei hohen Temperaturen 
kondensierbar ist. 

Eine allgemeine Formulierung des Problems wird in unterschiedlichen Darstellungen angegeben. Fur 
drei spezifische Falle. die sowohl Ein- als such Zweikomoonenten-Zweiohaseneemische einbchlieDen. 
erhalt man analytische Losungen. 

Es wird gezeigt, dab durch schnelle Warmeabfuhr durch Strahlung eine besondere Nebelbildung 
herbeige~~hrt werden kann. Die durch Strahlungsaustuasch bedingte Nebeibildung hat sich als eine 
interessante und wichtige Erscheinung erwiesen, und zwar nicht nur dadurch, daR sie besondere 
Eigenheiten aufweist, die sich von denen bei der iiblichen, durch Diffusion hervogerufenen Nebelbildung 
unterscheiden, sondern such dadurch, dal3 sie den Warmelbergang von dem Gem&h an die 

Phasengrenze in hohem MaB begiinstigt. 

TEllJlOI’IEPEHQC OT CMJlbHO HAI-PET00 KOHAEHCMPYEMOti CMECM 

AHHoTau~ -- kifCJIeLIyIOTCa &i%MHa% KOHAeHCa~~~ II IIefK%oC TenJIa B CIiJIbHO HaffKZOii CMeCII 

fa30B. COEepXCaUIeii nap. KOHJleHCIIpyeMbI~ IIpII BbICOICO~ TeMIIepaTyfE ,&HbI pd3JWiHbIe ~OpMyJW 

poem o6weii 3anaw. IlonyveHbI auanHTkfvecKHe perueHws nnx T~EX SacTtIbIx cnyqaee OCIHO- II nsyx- 

KOMnOHeHTHbIX LIByX@a3HbIX CMeCeii. ,,OKa3aHO. YTO o6pa30aaHIIe TyMaHa lIpOIICX0LW-r II pe3y,IbTaTe 

CibICTpOrO OXJIaWIeHIIII CMeCH BCJIeaCTBHe A3JIy'ieHAR. AaHHOe IIBJIeHIIe IlBsAXeTCX BeCbMa HHTepeCHbIM 

~Ba~HbIM.u~KO~bKy OHOHeTO~bKOOT~~qaeTC~ OTIlpOUeCCa 06pasoBaHnx TyMaHa 3aCk+T 06bFIHOJO 

iVI$I+y3IIOHHOrO npOIIeCCa, HO TaKXe OKa3bIBaeT fiOfib”,Oe B,lWRHWe Ha ~HTeHC~~~~U~~ FIe~HOCa 

Tenna OTCM~~W K rpamiue. 


